Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

 Due to a lapse in federal funding, this USDA website will not be actively updated. Once funding has been reestablished, online operations will continue.


  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): William H. Schlesinger; Michael C. Dietze; Robert B. Jackson; Richard P. Phillips; Charles C. RhoadesLindsey E. RustadJames M. Vose
    Date: 2015
    Source: Global Change Biology. doi: 10.1111/gcb.13105.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (0 B)

    Description

    Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2O and CH4) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil. Extreme droughts often lead to more common and more intense forest fires, causing dramatic changes in the nutrient storage and loss from forest ecosystems. Changes in the future manifestation of drought will affect carbon uptake and storage in forests, leading to feedbacks to the Earth's climate system. We must improve the recognition of drought in nature, our ability to manage our forests in the face of drought, and the parameterization of drought in earth system models for improved predictions of carbon uptake and storage in the world's forests.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Schlesinger, William H.; Dietze, Michael C.; Jackson, Robert B.; Phillips, Richard P.; Rhoades, Charles C.; Rustad, Lindsey E.; Vose, James M. 2015. Forest biogeochemistry in response to drought. Global Change Biology. doi: 10.1111/gcb.13105.

    Cited

    Google Scholar

    Keywords

    biogeochemistry, carbon cycle, fire, forest management, insect attack, soil biogeochemistry, mountain pine beetle

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/50815