Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Sparkle L. Malone; Christina L. Staudhammer; Steven F. Oberbauer; Paulo Olivas; Michael G. Ryan; Jessica L. Schedlbauer; Henry W. Loescher; Gregory Starr
    Date: 2014
    Source: PLoS ONE. 9(12): e115058.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (1.0 MB)


    This research examines the relationships between El Nino Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Nino and La Nina phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Nina phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (-11 to -110 g CO2 m-2 yr-1) compared to El Nino and neutral years (-5 to -43.5 g CO2 m-2 yr-1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m-2 yr-1) except in one exceptionally wet year that was associated with an El Nino phase (-16 g CO2 m-2 yr-1). Considering that future climate predictions suggest a higher frequency and intensity in El Nino and La Nina phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Malone, Sparkle L.; Staudhammer, Christina L.; Oberbauer, Steven F.; Olivas, Paulo; Ryan, Michael G.; Schedlbauer, Jessica L.; Loescher, Henry W.; Starr, Gregory. 2014. El Nino Southern Oscillation (ENSO) enhances CO2 exchange rates in freshwater marsh ecosystems in the Florida Everglades. PLoS ONE. 9(12): e115058.


    Google Scholar


    El Nino Southern Oscillation (ENSO), La Nina, CO2 exchange, freshwater marsh ecosystems, Florida Everglades

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page