Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Owen K. Atkin; Keith J. Bloomfield; Peter B. Reich; Mark G. Tjoelker; Gregory P. Asner; Damien Bonal; Gerhard Bonisch; Matt G. Bradford; Lucas A. Cernusak; Eric G. Cosio; Danielle Creek; Kristine Y. Crous; Tomas F. Domingues; Jeffrey S. Dukes; John J. G. Egerton; John R. Evans; Graham D. Farquhar; Nikolaos M. Fyllas; Paul P. G. Gauthier; Emanuel Gloor; Teresa E. Gimeno; Kevin L. Griffin; Rossella Guerrieri; Mary A. Heskel; Chris Huntingford; Franc_oise Yoko Ishida; Jens Kattge; Hans Lambers; Michael J. Liddell; Jon Lloyd; Christopher H. Lusk; Roberta E. Martin; Ayal P. Maksimov; Trofim C. Maximov; Yadvinder Malhi; Belinda E. Medlyn; Patrick Meir; Lina M. Mercado; Nicholas Mirotchnick; Desmond Ng; Ulo Niinemets; Odhran S. O’Sullivan; Oliver L. Phillips; Lourens Poorter; Pieter Poot; I. Colin Prentice; Norma Salinas; Lucy M. Rowland; Michael G. Ryan; Stephen Sitch; Martijn Slot; Nicholas G. Smith; Matthew H. Turnbull; Mark C. VanderWel; Fernando Valladares; Erik J. Veneklaas; Lasantha K. Weerasinghe; Christian Wirth; Ian J. Wright; Kirk R. Wythers; Jen Xiang; Shuang Xiang; Joana Zaragoza-Castells
    Date: 2015
    Source: New Phytologist. 206: 614.636.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (2.0 MB)


    A challenge for the development of terrestrial biosphere models (TBMs) and associated land surface components of Earth system models (ESMs) is improving representation of carbon (C) exchange between terrestrial plants and the atmosphere, and incorporating biological variation arising from diversity in plant functional types (PFTs) and climate (Sitch et al., 2008; Booth et al., 2012; Prentice & Cowling, 2013; Fisher et al., 2014). Accounting for patterns in leaf respiratory CO2 release in darkness (Rdark) in TBMs and ESMs is crucial (King et al., 2006; Huntingford et al., 2013; Wythers et al., 2013), as plant respiration - roughly half of which comes from leaves (Atkin et al., 2007) - releases c. 60 Pg Cyr-1 (Prentice et al., 2001; Canadell et al., 2007; IPCC, 2013). Fractional changes in leaf Rdark as a consequence of climate change can, therefore, have large impacts on simulated net C exchange and C storage for individual ecosystems (Piao et al., 2010) and, by influencing the CO2 concentration of the atmosphere, potentially feedback so as to alter the extent of future global warming (Cox et al., 2000; Huntingford et al., 2013). There is growing acceptance, however, that leaf Rdark is not adequately represented in TBMs and ESMs (Huntingford et al., 2013; Smith & Dukes, 2013), resulting in substantial uncertainty in future climate predictions (Leuzinger & Thomas, 2011); consequently, there is a need to improve representation of leaf Rdark in predictions of future vegetation-climate interactions for a range of possible fossil fuel-burning scenarios (Atkin et al., 2014). Achieving this requires an analysis of variation in leaf Rdark along global climate gradients and among taxa within ecosystems; and establishing whether relationships between leaf Rdark and associated leaf traits vary predictably among environments and PFTs (Wright et al., 2004, 2006; Reich et al., 2006; Atkin et al., 2008). PFTs enable a balance to be struck between the computational requirements of TBMs to minimize the number of plant groups and availability of sufficient data to fully characterize functional types, and the reality that plant species differ widely in trait values. Most TBMs contain at least five PFTs, with species being organized on the basis of canopy characteristics such as leaf size and life span, physiology, leaf mass-to-area ratio, canopy height and phenology (Fisher et al., 2014). Although classifications that are directly trait-based are emerging (Kattge et al., 2011), PFT classifications are still widely used in TBMs and land surface components of ESMs. As such, discerning the role of PFTs in modulating relationships between leaf Rdark and associated leaf traits will provide critical insights.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Atkin, Owen K.; Bloomfield, Keith J.; Reich, Peter B.; Tjoelker, Mark G.; Asner, Gregory P.; Bonal, Damien; Bonisch, Gerhard; Bradford, Matt G.; Cernusak, Lucas A.; Cosio, Eric G.; Creek, Danielle; Crous, Kristine Y.; Domingues, Tomas F.; Dukes, Jeffrey S.; Egerton, John J. G.; Evans, John R.; Farquhar, Graham D.; Fyllas, Nikolaos M.; Gauthier, Paul P. G.; Gloor, Emanuel; Gimeno, Teresa E.; Griffin, Kevin L.; Guerrieri, Rossella; Heskel, Mary A.; Huntingford, Chris; Ishida, Franc_oise Yoko; Kattge, Jens; Lambers, Hans; Liddell, Michael J.; Lloyd, Jon; Lusk, Christopher H.; Martin, Roberta E.; Maksimov, Ayal P.; Maximov, Trofim C.; Malhi, Yadvinder; Medlyn, Belinda E.; Meir, Patrick; Mercado, Lina M.; Mirotchnick, Nicholas; Ng, Desmond; Niinemets, Ulo; O’Sullivan, Odhran S.; Phillips, Oliver L.; Poorter, Lourens; Poot, Pieter; Prentice, I. Colin; Salinas, Norma; Rowland, Lucy M.; Ryan, Michael G.; Sitch, Stephen; Slot, Martijn; Smith, Nicholas G.; Turnbull, Matthew H.; VanderWel, Mark C.; Valladares, Fernando; Veneklaas, Erik J.; Weerasinghe, Lasantha K.; Wirth, Christian; Wright, Ian J.; Wythers, Kirk R.; Xiang, Jen; Xiang, Shuang; Zaragoza-Castells, Joana. 2015. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist. 206: 614.636.


    Google Scholar


    acclimation, aridity, climate models, leaf nitrogen (N), photosynthesis, plant functional types (PFTs), respiration, temperature

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page