Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Alex Royo; Chris J. Peterson; John S. Stanovick; Walter P. Carson
    Date: 2016
    Source: Ecology. 97(6): 1566-1582.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (709.0 KB)

    Description

    Salvage logging following windthrow is common throughout forests worldwide even though the practice is often considered inimical to forest recovery. Because salvaging removes trees, crushes seedlings, and compacts soils, many warn this practice may delay succession, suppress diversity, and alter composition. Here, over 8 yr following windthrow, we experimentally evaluate how salvaging affects tree succession across 11 gaps in Eastern deciduous forests of Pennsylvania, wherein each gap was divided into salvaged and control (unsalvaged) halves. Our gaps vary in size and windthrow severity, and we explicitly account for this variation as well as variation in soil disturbance (i.e., scarification) resulting from salvaging so that our results would be generalizable. Salvage logging had modest and ephemeral impacts on tree succession. Seedling richness and density declined similarly over time in both salvaged and unsalvaged areas as individuals grew into saplings. The primary impact of salvaging on succession occurred where salvaging scarified soils. Here, salvaging caused 41 to 82% declines in sapling abundance, richness, and diversity, but these differences largely disappeared within 5 yr. Additionally, we documented interactions between windthrow severity and scarification. Specifically, low-severity windthrow and scarification combined reinforced dominance by shade-tolerant and browse-tolerant species (Acer pensylvanicum, Fagus grandifolia). In contrast, high windthrow severity and scarification together reduced the density of a fast-growing pioneer tree (Prunus pensylvanica) and non-tree vegetation cover by 75% and 26%, respectively. This reduction enhanced the recruitment of two mid-successional tree species, Acer rubrum and Prunus serotina, by 2 and 3-fold, respectively. Thus, our findings demonstrate that salvaging creates novel microsites and mitigates competing vegetation, thereby enhancing establishment of important hardwoods and promoting tree species coexistence. Our results, coupled with an assessment of 27 published post-windthrow salvage studies, suggest short-term studies may overestimate the impact of salvaging on regeneration. We conclude that the ecological costs and benefits of salvaging depend upon the variation in canopy and soil disturbance severity as well as the timescale at which effects are evaluated. Thus, our findings are inconsistent with the view that salvaging inexorably undermines plant diversity; rather we suggest salvaging can promote tree species coexistence within various contexts.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Royo, Alejandro A.; Peterson, Chris J.; Stanovick, John S.; Carson, Walter P. 2016. Evaluating the ecological impacts of salvage logging: can natural and anthropogenic disturbances promote coexistence? Ecology. 97(6): 1566-1582.

    Cited

    Google Scholar

    Keywords

    disturbance severity, diversity, salvage, tree regeneration, wind disturbance

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/52357