Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Massive amounts of agricultural and industrial water worldwide are polluted by different types of contaminants that harm the environment and impact human health. Removing the contaminants from effluents by adsorbent materials made from abundant, inexpensive polysaccharides is a feasible approach to deal with this problem. In this research, alginate beads combined with two types of cellulose, starch or xylan were synthesized. Their average diameters in air- and freeze-dried conditions were assessed by optical microscopy. Differences in morphology were observed by scanning electron microscopy. Their capacity for water uptake, their sorption capabilities for a model cationic pollutant and their charge density was investigated in relationship to their composition and their surface characteristics. Their interaction with water was evaluated using low-field NMR spectroscopy. It was found that nanocrystalline cellulose added the most to the beads’ sorption capacity for cationic contaminants while xylan admixture created the beads with the highest water sorption after lyophilization.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Li, Mei; Elder, Thomas; Buschle-Diller, Gisela. 2016. Alginate-based polysaccharide beads for cationic contaminant sorption from water. Polymer Bulletin.


    Google Scholar


    Alginate, Sorption, , Low-field NMR, Contaminant, Polysaccharide

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page