Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Wen J. Wang; Hong S. He; Frank R. ThompsonJacob S. Fraser; William D. Dijak
    Date: 2017
    Source: Landscape Ecology
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (5.0 MB)


    Context. Forests in the northeastern United States are currently in early- and mid-successional stages recovering from historical land use. Climate change will affect forest distribution and structure and have important implications for biodiversity, carbon dynamics, and human well-being. Objective. We addressed how aboveground biomass (AGB) and tree species distribution changed under multiple climate change scenarios (PCM B1, CGCM A2, and GFDL A1FI) in northeastern forests. Methods. We used the LANDIS PRO forest landscape model to simulate forest succession and tree harvest under current climate and three climate change scenarios from 2000 to 2300. We analyzed the effects of climate change on AGB and tree species distribution. Results. AGB increased from 2000 to 2120 irrespective of climate scenario, followed by slight decline, but then increased again to 2300. AGB averaged 10 % greater in the CGCM A2 and GFDL A1FI scenarios than the PCM B1 and current climate scenarios. Climate change effects on tree species distribution were not evident from 2000 to 2100 but by 2300 some northern hardwood and conifer species decreased in occurrence and some central hardwood and southern tree species increased in occurrence. Conclusions. Climate change had positive effects on forest biomass under the two climate scenarios with greatest warming but the patterns in AGB over time were similar among climate scenarios because succession was the primary driver of AGB dynamics. Our approach, which simulated stand dynamics and dispersal, demonstrated that a northward shift in tree species distributions may take 300 or more years.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Wang, Wen J.; He, Hong S.; Thompson, Frank R.; Fraser, Jacob S.; Dijak, William D. 2017. Changes in forest biomass and tree species distribution under climate change in the northeastern United States. Landscape Ecology. 32(7): 1399-1413.


    Google Scholar


    Demography, Disturbance, Dispersal, Forest landscape model, LANDIS PRO, LINKAGE II, Occurrence

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page