Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically based models were compared with observed spread rates of spread. Flame length–fireline intensity relationships were compared with flame length data. Wind was the most important variable related to spread success. Air temperature, live fuel moisture content, slope angle and fuel bed bulk density were significantly related to spread rate. A flame length–fireline intensity model for Galician shrub fuels was similar to the chaparral data. The Rothermel model failed to predict fire spread in nearly all of the fires that spread using default values. Increasing the moisture of extinction marginally improved its performance. Modifications proposed by Cohen, Wilson and Catchpole also improved predictions. The models successfully predicted fire spread 49 to 69% of the time. Only the physical model predictions fell within a factor of two of actual rates. Mean bias of most models was close to zero. Physically based models generally performed better than empirical models and are recommended for further study.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Weise, David R.; Koo, Eunmo; Zhou, Xiangyang; Mahalingam, Shankar; Morandini, Frédéric; Balbi, Jacques-Henri. 2016. Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels. International Journal of Wildland Fire. 25(9): 980-994.

    Cited

    Google Scholar

    Keywords

    Adenostoma fasciculatum, Arctostaphylos glandulosa, Ceanothus crassifolius, Quercus berberidifolia

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/52537