Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Samuel A. Cushman; Tamara Max; Nashelly Meneses; Luke M. Evans; Sharon Ferrier; Barbara Honchak; Thomas G. Whitham; Gerard J. Allan
    Date: 2014
    Source: Ecological Applications. 24(5): 1000-1014.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (861.0 KB)


    Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined molecular analyses of 82 populations including 1312 individual trees dispersed over the species' geographical distribution. We reduced the data set to 40 populations and 743 individuals to eliminate admixture with a sibling species, and used multivariate restricted optimization and reciprocal causal modeling to evaluate the effects of river network connectivity and climatic gradients on gene flow. Our results confirmed the following: First, gene flow of Fremont cottonwood is jointly controlled by the connectivity of the river network and gradients of seasonal precipitation. Second, gene flow is facilitated by mid-sized to large rivers, and is resisted by small streams and terrestrial uplands, with resistance to gene flow decreasing with river size. Third, genetic differentiation increases with cumulative differences in winter and spring precipitation. Our results suggest that ongoing fragmentation of riparian habitats will lead to a loss of landscape-level genetic connectivity, leading to increased inbreeding and the concomitant loss of genetic diversity in a foundation species. These genetic effects will cascade to a much larger community of organisms, some of which are threatened and endangered.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Cushman, Samuel A.; Max, Tamara; Meneses, Nashelly; Evans, Luke M.; Ferrier, Sharon; Honchak, Barbara; Whitham, Thomas G.; Allan, Gerard J. 2014. Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecological Applications. 24(5): 1000-1014.


    Google Scholar


    climate, conservation, Fremont cottonwood, gene flow, landscape genetics, landscape resistance, Populus fremontii, reciprocal causal modeling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page