Skip to main content
U.S. flag

An official website of the United States government

Canopy-derived fuels drive patterns of in-fire energy release and understory plant mortality in a longleaf pine ( Pinus palustris ) sandhill in northwest Florida, USA

Author(s):

J. Kevin Hiers
Scott Pokswinski
Benjamin Hornsby
Eric Rowell

Year:

2016

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Southern Research Station

Source:

Canadian Journal of Remote Sensing. 42(5): 489-500.

Description

Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about ecological fire effects. Although the correlation between fire frequency and plant biological diversity in frequently burned coniferous forests is well documented, the ecological mechanisms explaining this relationship remains elusive. Uncovering these mechanisms will require highly resolved, spatially explicit fire data (Loudermilk et al. 2012). Here, we describe our efforts at connecting spatial variability in fuels to fire energy release and fire effects using fine scale (1 cm2) longwave infrared (LWIR) thermal imagery.We expected that the observed variability in fire radiative energy release driven by canopy-derived fuels could be the causal mechanism driving plant mortality, an important component of community dynamics. Analysis of fire radiant energy released in several experimental burns documented a close connection among patterns of fire intensity and plant mortality. Our results also confirmed the significance of cones in driving fine-scale spatial variability of fire intensity. Spatially and temporally resolved data from these techniques show promise to effectively link the combustion environment with postfire processes, remote sensing at larger scales, and wildland fire modeling efforts.

Citation

O'Brien, Joseph J.; Loudermilk, E. Louise; Hiers, J. Kevin; Pokswinski, Scott; Hornsby, Benjamin; Hudak, Andrew; Strother, Dexter; Rowell, Eric; Bright, Benjamin C. 2016. Canopy-derived fuels drive patterns of in-fire energy release and understory plant mortality in a longleaf pine (Pinus palustris) sandhill in northwest Florida, USA. Canadian Journal of Remote Sensing. 42(5): 489-500.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/52702