Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Two-peak hydrographs after a single rain event are observed in watersheds and storms with distinct volumes contributing as fast and slow runoff. The authors developed a hydrograph model able to quantify these separate runoff volumes to help in estimation of runoff processes and residence times used by watershed managers. The model uses parallel application of two advection-diffusion equations and calibrates the model’s fast and slow time parameters as well as a coefficient representing the relative size of the smaller hydrograph peak. The model provides an accurate representation of hydrograph timing, volume, peak, points of inflection, and recession rate, and its parameters represent physical processes of advection and diffusion and relate to watershed scale. The authors calibrated the model to match observed two-peak hydrographs with high efficiency on a watershed with distinct urban and rural land cover, and another watershed with distinct fast runoff from saturated areas. The Nash–Sutcliffe efficiency (NSE) of the simulated discharge was 0.93 for the urban watershed and 0.92 for the rural watershed. For the urban watershed, the simulated slow runoff volume was 89.6% of total runoff, and the fast runoff volume was 10.4% of total runoff; and for the rural watershed, the simulated slow runoff volume was 93.1% of total runoff, and the fast runoff volume was 6.9% of total runoff. This parsimonious two-peak hydrograph model can help researchers investigate how different storms and land cover types partition fast and slow flow and impact rainfall-runoff dynamics.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Yang, Yang; Endreny, Theodore A.; Nowak, David J. 2015. Simulating double-peak hydrographs from single storms over mixed-use watersheds. Journal of Hydrologic Engineering. 20(11): 06015003.


    Google Scholar


    Hydrograph model, Fast flow, Slow flow, Advection-diffusion equation

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page