Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Bode A. Olukolu; C. Dana Nelson; Albert G. Abbott
    Date: 2012
    Source: In: Sniezko, Richard A.; Yanchuk, Alvin D.; Kliejunas, John T.; Palmieri, Katharine M.; Alexander, Janice M.; Frankel, Susan J., tech. coords. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. p. 177
    Publication Series: General Technical Report (GTR)
    Station: Pacific Southwest Research Station
    PDF: View PDF  (155.0 KB)

    Description

    Phytophthora cinnamomi (Phytophthora crown and root rot, or ink disease) is now known to infect several hundred plant species in the world and is especially linked to the widespread death of mature chestnut (Castanea) and evergreen oak (Quercus ilex L.) trees in southeast United States. With an expanding geographical distribution of P. cinnamomi in Northern America, and coupled with the chestnut blight disease (caused by Cryphonectria parasitica) that initially decimated the 4 billion-strong American chestnut population (about 30 percent of trees in the Appalachian mountains), P. cinnamomi is becoming a crucial limiting factor in natural regeneration and reforestation due to the high susceptibility of both young seedlings and mature trees. In this preliminary study, we report the use of various genomic resources for identifying quantitative trait loci (QTLs) and candidate genes (CGs) underlying resistance to root rot disease. The strategy involved the use of single nucleotide polymorphism (SNP) markers and a small segregating population (48 progenies) for the construction of a transcriptome-based map and identification of root rot disease resistance QTLs. Using a resistant Chinese chestnut and susceptible American chestnut parents, two major QTLs were detected on the chestnut linkage group E (64.8 cM map length) at a logarithm of the odds (LOD) of 4.42 and 5.39. These QTLs spanned 3 cM (12-15 cM) and 16 cM (42-62 cM), respectively and explained 34.6 ± 11 percent and 40.4 ± 10.9 percent of the total phenotypic variance, respectively. Following the alignment of this low resolution map (211 mapped SNP markers) against the high density consensus chestnut map, additional expressed sequence tag (EST)-based markers provided better marker saturation of the QTLs. Two of these EST-based markers within the QTLs reveal two plausible CGs that include CCR1 (Cinnamoyl CoA Reductase 1) and BAG1 (BCL-2-Associated Athanogene 1). Additionally, comparative analysis with the peach genome using the chestnut physical map revealed that the chestnut QTL regions correspond to homologous segments of the peach genome on chromosome 3 and 4. The homologous regions in peach identified three plausible CGs including RPH1 (resistance to Phytophthora), NPR3/NPR4 (non-expresser of pathogenesis-related genes 3/4) and BAG4 (BCL-2-Associated Athanogene 4). Following Southern hybridization on chestnut bacterial artificial chromosome (BAC) filters using overgo probes, the co-localization of the CGs with the QTLs was confirmed. For further validation based on gene expression, a larger mapping population, or an association mapping panel, is required. These results can provide functional markers for precise and accurate marker-assisted breeding for introgression of resistance genes into the American chestnut. Transgenic trees are currently also been developed in parallel based on cloned CGs.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Olukolu, Bode A.; Nelson, C. Dana; Abbott, Albert G. 2012. Mapping resistance to Phytophthora cinnamomi in chestnut (Castanea sp.). In: Sniezko, Richard A.; Yanchuk, Alvin D.; Kliejunas, John T.; Palmieri, Katharine M.; Alexander, Janice M.; Frankel, Susan J., tech. coords. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. p. 177.

    Keywords

    forest disease and insect resistance, evolutionary biology, climate change, durable resistance

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/52907