Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Daniel C. Donato; Joseph B. Fontaine; W. Douglas Robinson; J. Boone Kauffman; Beverly E. Law
    Date: 2009
    Source: Journal of Ecology. 97(1): 142-154
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (1.0 MB)

    Description

    1. Variations in disturbance regime strongly influence ecosystem structure and function. A prominent form of such variation is when multiple high-severity wildfires occur in rapid succession (i.e. short-interval (SI) severe fires, or ‘re-burns’). These events have been proposed as key mechanisms altering successional rates and pathways.
    2. We utilized a natural experiment afforded by two overlapping wildfires occurring within a 15-year interval in forests of the Klamath–Siskiyou Mountains, Oregon (USA). We tested for unique effects of a SI fire (15-year interval before 2002 fire) by comparing vegetation communities 2 years post-fire to those following a long-interval (LI) fire (> 100-year interval before 2002 fire) and in mature/old-growth (M/OG) stands (no high-severity fire in > 100-year).
    3. Nearly all species found in M/OG stands were present at similar relative abundance in both the LI and SI burns, indicating high community persistence through multiple high-severity fires. However, the SI burn had the highest species richness and total plant cover with additions of disturbance-associated forbs and low shrubs, likely due to a propagule bank of early seral species that developed between fires. Persistence of flora was driven by vegetative sprouting, on-site seed banks, and dispersal from off-site seed sources. Several broadly generalizable plant functional traits (e.g. rapid maturation, long-lived seed banks) were strongly associated with the SI burn.
    4. Sprouting capacity of hardwoods and shrubs was unaltered by recurrent fire, but hardwood/shrub biomass was lower in the SI burn because individuals were smaller before the second fire. Conifer regeneration densities were high in both the SI and LI burns (range = 298–6086 and 406–2349 trees ha−1, respectively), reflecting similar availability of seed source and germination substrates.
    5. Synthesis. SI severe fires are typically expected to be deleterious to forest flora and development; however, these results indicate that in systems characterized by highly variable natural disturbances (e.g. mixed-severity fire regime), native biota possess functional traits lending resilience to recurrent severe fire. Compound disturbance resulted in a distinct early seral assemblage (i.e. interval-dependent fire effects), thus contributing to the landscape heterogeneity inherent to mixed-severity fire regimes. Process-oriented ecosystem management incorporating variable natural disturbances, including ‘extreme’ events such as SI severe fires, would likely perpetuate a diversity of habitats and successional pathways on the landscape.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Donato, Daniel C.; Fontaine, Joseph B.; Robinson, W. Douglas; Kauffman, J. Boone; Law, Beverly E. 2009. Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. Journal of Ecology. 97(1): 142-154.

    Cited

    Google Scholar

    Keywords

    Biscuit Fire, compound disturbance, conifer regeneration, fire interval, functional traits, mixed-severity fire regime, plant diversity, reburn, Silver Fire, shrub sprouting

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53026