Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Dry deposition of nitric acid vapor (HNO(3)) is a major contributor to eutrophication of natural ecosystems. Although soil fertilization by nitrogen deposition is considered to be the primary pathway for changes in plant nutrient status and shifts in ecological structure, the aerial portion of plants offer many times the surface area in which to collect atmospheric HNO(3). As much as 60% of deposited nitrogen may be retained in the canopy and not land on the soil surface below. Although uptake and assimilation appears to contribute to retention, only a small percentage of dry deposition is recovered in assimilated N pools. To test the importance of biological activity on the process and measurements of dry deposition, we used controlled environmental chambers to compare deposition to living and freeze-dried foliage of four tree species using (15)N-labeled HNO(3). In living trees, assimilation was determined by (15)N incorporation into free amino acids and proteins in leaves and roots. From 10% to 60% of the retained HNO(3) was incorporated into the biologically active nitrogen pool. The remainder was bound to foliar surfaces in an insoluble form in either living or freeze-dried foliage. The importance of the boundary layer conditions emerged as a primary factor controlling dry deposition characteristics and measurements.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Padgett, Pamela E.; Cook, Hillary; Bytnerowicz, Andrzej; Heath, Robert L. 2009. Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees. J. Environ. Monit. 11(1): 75-84.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53048