Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Lukas Weise; Andreas Ulrich; Matilde Moreano; Arthur Gessler; Zachary E. Kayler; Kristin Steger; Bernd Zeller; Kristin Rudolph; Jelena Knezevic-Jaric
    Date: 2016
    Source: FEMS Microbiology Ecology. 92(5): fiw035. 14 p.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E.; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena. 2016. Water level changes affect carbon turnover and microbial community composition in lake sediments. FEMS Microbiology Ecology. 92(5): fiw035. 14 p.

    Cited

    Google Scholar

    Keywords

    carbon dioxide emission, phospholipid fatty acids, keeling plot, stable isotope, water level changes

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53064