Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Timothy G. Gregoire; Erik Næsset; Ronald E. McRoberts; Göran Ståhl; Hans Andersen; Terje Gobakken; Liviu Ene; Ross Nelson
    Date: 2016
    Source: Remote Sensing of Environment
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (1.0 MB)

    Description

    For many decades remotely sensed data have been used as a source of auxiliary information when conducting regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of aboveground forest biomass. This technology is now employed routinely in forest management inventories of some Nordic countries, and there is eager anticipation for its application to assess changes in standing biomass in vast tropical regions of the globe in concert with the UN REDD program to limit C emissions. In the rapidly expanding literature on LiDAR-assisted biomass estimation the assessment of the uncertainty of estimation varies widely, ranging from statistically rigorous to ad hoc. In many instances, too, there appears to be no recognition of different bases of statistical inference which bear importantly on uncertainty estimation. Statistically rigorous assessment of uncertainty for four large LiDAR-assisted surveys is expounded.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Gregoire, Timothy G.; Næsset, Erik; McRoberts, Ronald E.; Ståhl, Göran; Andersen, Hans-Erik; Gobakken, Terje; Ene, Liviu; Nelson, Ross. 2016. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sensing of Environment. 173: 98-108.

    Cited

    Google Scholar

    Keywords

    Sampling, Statistical inference, Variance estimation.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53126