Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Michael K. YoungDaniel J. IsaakKevin S. McKelvey; Taylor M. Wilcox; Daniel M. Bingham; Kristine L. PilgrimKellie J. Carim; Matthew R. Campbell; Matthew P. Corsi; Dona L. HoranDavid E. NagelMichael K. Schwartz
    Date: 2016
    Source: PLoS ONE. 11(11): e0163563.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (4.0 MB)


    Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U. S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78±0.86; classification success, 72±82%; 10-fold cross validation, 70±82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5±74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Young, Michael K.; Isaak, Daniel J.; McKelvey, Kevin S.; Wilcox, Taylor M.; Bingham, Daniel M.; Pilgrim, Kristine L.; Carim, Kellie J.; Campbell, Matthew R.; Corsi, Matthew P.; Horan, Dona L.; Nagel, David E.; Schwartz, Michael K. 2016. Climate, demography, and zoogeography predict introgression thresholds in salmonid hybrid zones in Rocky Mountain streams. PLoS ONE. 11(11): e0163563.


    Google Scholar


    invasive species, nonnative species, hybridization, westslope cutthroat trout, conservation

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page