Skip to main content
U.S. flag

An official website of the United States government

High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

Author(s):

Benjamin N. Sulman
Koong Yi
Lixin Wang
Richard P. Phillips
Kimberly A. Novick

Year:

2016

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Northern Research Station

Source:

Geophysical Research Letters

Description

When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south central Indiana, USA, to quantify how transpiration and photosynthesis respond to fluctuations in VPD versus SWC. High VPD and low SWC both explained reductions in photosynthesis relative to its long-term mean, as well as reductions in transpiration relative to potential transpiration estimated with the Penman-Monteith equation. Flux responses to typical fluctuations in SWC and VPD had similar magnitudes. Integrated over the year, VPD fluctuations accounted for significant reductions of GPP in both nondrought and drought years. Our results suggest that increasing VPD under climatic warming could reduce forest CO2 uptake regardless of changes in SWC.

Citation

Sulman, Benjamin N.; Roman, D. Tyler; Yi, Koong; Wang, Lixin; Phillips, Richard P.; Novick, Kimberly A. 2016. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophysical Research Letters. 43(18): 9686-9695.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/53297