Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): M. E. Miller; William Elliot; M. Billmire; Pete Robichaud; K. A. Endsley
    Date: 2016
    Source: International Journal of Wildland Fire. 25: 1061-1073.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (1.0 MB)

    Description

    Post-wildfire flooding and erosion can threaten lives, property and natural resources. Increased peak flows and sediment delivery due to the loss of surface vegetation cover and fire-induced changes in soil properties are of great concern to public safety. Burn severity maps derived from remote sensing data reflect fire-induced changes in vegetative cover and soil properties. Slope, soils, land cover and climate are also important factors that require consideration. Many modelling tools and datasets have been developed to assist remediation teams, but process-based and spatially explicit models are currently underutilised compared with simpler, lumped models because they are difficult to set up and require properly formatted spatial inputs. To facilitate the use of models in conjunction with remote sensing observations, we developed an online spatial database that rapidly generates properly formatted modelling datasets modified by user-supplied soil burn severity maps. Although assembling spatial model inputs can be both challenging and time-consuming, the methods we developed to rapidly update these inputs in response to a natural disaster are both simple and repeatable. Automating the creation of model inputs facilitates the wider use of more accurate, process-based models for spatially explicit predictions of post-fire erosion and runoff.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Miller, M. E.; Elliot, W. J.; Billmire, M.; Robichaud, P. R.; Endsley, K. A. 2016. Rapid-response tools and datasets for post-fire remediation: Linking remote sensing and process-based hydrological models. International Journal of Wildland Fire. 25: 1061-1073.

    Cited

    Google Scholar

    Keywords

    database, forest fire, forestry, hazards, hydrology

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53376