Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R. Talbot Trotter, IIIMelody A. Keena
    Date: 2016
    Source: Environmental Entomology. 45(6): 1360-1370.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (532.0 KB)

    Description

    Efforts to manage and eradicate invasive species can benefit from an improved understanding of the physiology, biology, and behavior of the target species, and ongoing efforts to eradicate the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) highlight the roles this information may play. Here, we present a climate-driven phenology model for A. glabripennis that provides simulated life-tables for populations of individual beetles under variable climatic conditions that takes into account the variable number of instars beetles may undergo as larvae. Phenology parameters in the model are based on a synthesis of published data and studies of A. glabripennis, and the model output was evaluated using a laboratory-reared population maintained under varying temperatures mimicking those typical of Central Park in New York City. The model was stable under variations in population size, simulation length, and the Julian dates used to initiate individual beetles within the population. Comparison of model results with previously published field-based phenology studies in native and invasive populations indicates both this new phenology model, and the previously published heating-degree-day model show good agreement in the prediction of the beginning of the flight season for adults. However, the phenology model described here avoids underpredicting the cumulative emergence of adults through the season, in addition to providing tables of life stages and estimations of voltinism for local populations. This information can play a key role in evaluating risk by predicting the potential for population growth, and may facilitate the optimization of management and eradication efforts.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Trotter, R. Talbot; Keena, Melody A. 2016. A variable-instar climate-driven individual beetle-based phenology model for the invasive Asian longhorned beetle (Coleoptera: Cerambycidae). Environmental Entomology. 45(6): 1360-1370.

    Cited

    Google Scholar

    Keywords

    simulation, population structure, heating degree days, voltinism

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53402