Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Yan Boulanger; Frédéric Fabry; Alamelu Kilambi; Deepa S. Pureswaran; Brian R. Sturtevant; Rémi Saint-Amant
    Date: 2017
    Source: Agricultural and Forest Meteorology. 234-235: 127-135.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (3.0 MB)

    Description

    The likely spread of the current spruce budworm (SBW; Choristoneura fumiferana [Clem.]) outbreak fromhigh to low density areas brings to the forefront a pressing need to understand its dispersal dynamics and to document mass exodus flights in relation to weather patterns. In this study, we used the weather surveillance radar of Val d'Irène in eastern Canada in combination with weather information from the Rapid Update Cycle (RUC) model output to track and document a SBW mass exodus flight that occurredon July 15-16th 2013. Analyses confirmed the potential of using weather radar and RUC data to help assess SBW mass exodus dynamics. Weather surveillance radar data suggested that the mass exodus flight originated from both the northern and southern sides of the St- Lawrence River estuary with mostindividuals originating from severely defoliated areas on the north shore. During the exodus flight, SBW moths may have covered a distance of over 200 km. Detailed large-scale assessment of this mass exodus flight using radar data allowed for the identification of convergence zones and a liftoff from a lightly defoliated area which has never been documented before. Based on radar and lower tropospheric weather data, SBW dispersed downwind in a rather shallow layer, probably between 400 and 800 m. These results imply that moths were generally dispersing in the vicinity of the top of the temperature inversion zone where both temperature and wind were highest throughout the exodus flight period. We advocate that the use of weather radar technology coupled with data on lower tropospheric weather conditions might benefit other monitoring tools already being used and may also help calibrate SBW atmospheric transport models.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Boulanger, Yan; Fabry, Frédéric; Kilambi, Alamelu; Pureswaran, Deepa S.; Sturtevant, Brian R.; Saint-Amant, Rémi. 2017. The use of weather surveillance radar and high-resolution three dimensional weather data to monitor a spruce budworm mass exodus flight. Agricultural and Forest Meteorology. 234-235: 127-135.

    Cited

    Google Scholar

    Keywords

    Weather surveillance radar, Spruce budworm, Insect dispersal, Mass exodus flight, RUC, Insect outbreak

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53419