Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Sparkle L. Malone; Leda N. Kobziar; Christina L. Staudhammer; Amr Abd-Elrahman
    Date: 2011
    Source: Remote Sensing. 3: 2005-2028.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (565.0 KB)


    Pine flatwoods forests in the southeastern US have experienced severe wildfires over the past few decades, often attributed to fuel load build-up. These forest communities are fire dependent and require regular burning for ecosystem maintenance and health. Although prescribed fire has been used to reduce wildfire risk and maintain ecosystem integrity, managers are still working to reintroduce fire to long unburned areas. Common perception holds that reintroduction of fire in long unburned forests will produce severe fire effects, resulting in a reluctance to prescribe fire without first using expensive mechanical fuels reduction techniques. To inform prioritization and timing of future fire use, we apply remote sensing analysis to examine the set of conditions most likely to result in high burn severity effects, in relation to vegetation, years since the previous fire, and historical fire frequency. We analyze Landsat imagery-based differenced Normalized Burn Ratios (dNBR) to model the relationships between previous and future burn severity to better predict areas of potential high severity. Our results show that remote sensing techniques are useful for modeling the relationship between elevated risk of high burn severity and the amount of time between fires, the type of fire (wildfire or prescribed burn), and the historical frequency of fires in pine flatwoods forests.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Malone, Sparkle L.; Kobziar, Leda N.; Staudhammer, Christina L.; Abd-Elrahman, Amr. 2011. Modeling relationships among 217 fires using remote sensing of burn severity in southern pine forests. Remote Sensing. 3: 2005-2028.


    Google Scholar


    burn severity, remote sensing, differenced normalized burn ratios, fire frequency, pine flatwoods forest, fire model, wildfire, prescribed fire

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page