Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    High-resolution airborne imaging spectroscopy represents a promising avenue for mapping the spread of invasive tree species through native forests, but for this technology to be useful to forest managers there are two main technical challenges that must be addressed: (1) mapping a single focal species amongst a diverse array of other tree species; and (2) detecting early outbreaks of invasive plant species that are often hidden beneath the forest canopy. To address these challenges, we investigated the performance of two single-class classification frameworks—Biased Support Vector Machine (BSVM) and Mixture Tuned Matched Filtering (MTMF)—to estimate the degree of Psidium cattleianum incidence over a range of forest vertical strata (relative canopy density). We demonstrate that both BSVM and MTMF have the ability to detect relative canopy density of a single focal plant species in a vertically stratified forest, but they differ in the degree of user input required. Our results suggest BSVM as a promising method to disentangle spectrally-mixed classifications, as this approach generates decision values from a similarity function (kernel), which optimizes complex comparisons between classes using a dynamic machine learning process.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Barbosa, Jomar; Asner, Gregory; Martin, Roberta; Baldeck, Claire; Hughes, Flint; Johnson, Tracy. 2016. Determining subcanopy Psidium cattleianum invasion in Hawaiian forests using imaging spectroscopy. Remote Sensing. 8(1):33.

    Cited

    Google Scholar

    Keywords

    invasive species, strawberry guava, single-class classification, mixture tuned matched filtering, biased support vector machine, Carnegie Airborne Observatory

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53520