Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Kristine M. Haynes; Evan S. KaneLynette PotvinErik A. LilleskovRandall K. Kolka; Carl P.J. Mitchell
    Date: 2017
    Source: Atmospheric Environment. 154: 247-259.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT – sedge only treatment mesocosms with a mean TGM flux of –73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from –45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to –1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in vascular vegetation cover and peat warming as a result of climate change may significantly affect the dynamics of TGM fluxes between peatlands and the atmosphere.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P.J. 2017. Gaseous mercury fluxes in peatlands and the potential influence of climate change. Atmospheric Environment. 154: 247-259.

    Cited

    Google Scholar

    Keywords

    Hg, Total gaseous mercury flux, Wetland, Soil warming, Water table, Plant community, Climate change

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53551