Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Aaron S. Weed; Matthew P. Ayres; Andrew M. Liebhold; Ronald F. Billings
    Date: 2016
    Source: Ecography. 40(1): 221-234.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (7.0 MB)

    Description

    Resolving linkages between local-scale processes and regional-scale patterns in abundance of interacting species is important for understanding long-term population stability across spatial scales. Landscape patterning in consumer population dynamics may be largely the result of interactions between consumers and their predators, or driven by spatial variation in basal resources. Empirical testing of these alternatives has been limited by the lack of suitable data. In this study, we analyzed an extensive network of spatially replicated time series to characterize the local and regional processes affecting spatio-temporal dynamics of a tree-killing bark beetle (Dendroctonus frontalis or SPB) and its key predator (Thanasimus dubius) across the southeastern United States. We first used a mechanistic model to evaluate factors affecting the stability of 95 predator–prey time series and then conducted spatial analyses to evaluate scale dependence in the factors affecting the geographical patterning of this system. Across the region, population fluctuations of both species were correlated in space beyond 400 km but there was notable spatial variation in the deterministic and stochastic processes influencing forest-scale (local) fluctuations. Time series analyses indicated that local dynamics of SPB and T. dubius are not cyclical. Instead, the abundance of T. dubius responded almost instantaneously to changes in SPB abundance. Spatial variation in long-term forest-scale abundance of both species was linked most strongly to the abundance of pine habitat indicating a stronger role for resource availability in SPB population dynamics than top-down effects. Our results are consistent with other studies indicating that animal populations tend to be synchronized in space via spatially correlated processes such as weather; yet local dynamics tend to be linked to smaller-scale host patterns. Our study provides a rare empirical assessment of how local processes scale up to produce landscape patterns that influence forest ecology and forest management.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Weed, Aaron S.; Ayres, Matthew P.; Liebhold, Andrew M.; Billings, Ronald F. 2016. Spatio-temporal dynamics of a tree-killing beetle and its predator. Ecography. 40(1): 221-234.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53663