Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Lorenzo Marini; Bjorn Okland; Anna Maria Jonsson; Barbara Bentz; Allan Carroll; Beat Forster; Jean-Claude Gregoire; Rainer Hurling; Louis Michel Nageleisen; Sigrid Netherer; Hans Peter Ravn; Aaron Weed; Martin Schroeder
    Date: 2017
    Source: Ecography. 40: 1426-1435.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (530.0 KB)


    Bark beetles are among the most devastating biotic agents affecting forests globally and several species are expected to be favored by climate change. Given the potential interactions of insect outbreaks with other biotic and abiotic disturbances, and the potentially strong impact of changing disturbance regimes on forest resources, investigating climatic drivers of destructive bark beetle outbreaks is of paramount importance. We analyzed 17 time-series of the amount of wood damaged by Ips typographus, the most destructive pest of Norway spruce forests, collected across 8 European countries in the last three decades. We aimed to quantify the relative importance of key climate drivers in explaining timber loss dynamics, also testing for possible synergistic effects. Local outbreaks shared the same drivers, including increasing summer rainfall defiit and warm temperatures. Large availability of storm-felled trees in the previous year was also strongly related to an increase in timber loss, likely by providing an alternative source of breeding material. We did not find any positive synergy among outbreak drivers. On the contrary, the occurrence of large storms reduced the positive effect of warming temperatures and rainfall deficit. Th e large surplus of breeding material likely boosted I. typographus population size above the density threshold required to colonize and kill healthy trees irrespective of other climate triggers. Importantly, we found strong negative density dependence in I. typographus that may provide a mechanism for population decline after population eruptions. Generality in the effects of complex climatic events across different geographical areas suggests that the large-scale drivers can be used as early warning indicators of increasing local outbreak probability.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Marini, Lorenzo; Okland, Bjorn; Jonsson, Anna Maria; Bentz, Barbara; Carroll, Allan; Forster, Beat; Gregoire, Jean-Claude; Hurling, Rainer; Nageleisen, Louis Michel; Netherer, Sigrid; Ravn, Hans Peter; Weed, Aaron; Schroeder, Martin. 2017. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography. 40: 1426-1435.


    Google Scholar


    bark beetles, Ips typographus, climate, outbreak dynamics

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page