Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Patricia E. Maloney; Detlev R. Vogler; Andrew J. Eckert; Camille E. Jensen; David B. Neale
    Date: 2011
    Source: Forest Ecology and Management. 262(5): 770-779
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (1.0 MB)


    Historical logging, fire suppression, and an invasive pathogen, Cronartium ribicola, the cause of white pine blister rust (WPBR), are assumed to have dramatically affected sugar pine (Pinus lambertiana) populations in the Lake Tahoe Basin. We examined population- and genetic-level consequences of these disturbances within 10 sugar pine populations by assessing current population structure and trends for 1129 individuals, genetic diversity for 250 individuals, and frequency of WPBR-resistance for 102 families. Logging had occurred in 9 of 10 sites and fire suppression was evident in all stands. High density of white fir (Abies concolor) is often an indicator of fire suppression and we found a negative relationship between sugar pine survivorship and white fir basal area (r2 = 0.31). C. ribicola was present in 90% of stands (incidence range: 0–48%) and we found a significant relationship between mean host survivorship and disease incidence (r2 = 0.46). We estimated population growth rates (λ) from size-based transition matrices. For six of 10 sugar pine populations λ was ⩾1.0, indicating that these populations appear to be stable; for four populations, λ was <1.0, indicating populations that may be in decline. A population specific drift parameter, ci, which is a measure of genetic differentiation in allele frequencies relative to an ancestral population, ranged from 0.009 to 0.048. Higher values of ci indicate greater genetic drift, possibly due to a bottleneck caused by historical logging, other agents of mortality or much older events affecting population sizes. Effects of drift are known to be greater in small populations and we found a negative relationship between sugar pine density and ci (r2 = 0.36). Allele frequency of the Cr1 gene, responsible for WPBR-resistance in sugar pine, averaged 0.068 for all populations sampled; no WPBR infection was found in one population in which the Cr1 frequency was 0.112. Historical disturbances and their interactions have likely influenced the population biology of sugar pine in the Tahoe Basin; for some populations this has meant reduced population size, higher genetic drift, and poor survival of small- and intermediate-sized individuals. Possible management strategies include restoring population numbers, deploying WPBR-resistance, treating stands to promote natural sugar pine regeneration, and enhancing genetic diversity.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Maloney, Patricia E.; Vogler, Detlev R.; Eckert, Andrew J.; Jensen, Camille E.; Neale, David B. 2011. Population biology of sugar pine (Pinus lambertiana Dougl.) with reference to historical disturbances in the Lake Tahoe Basin: implications for restoration. Forest Ecology and Management. 262(5): 770-779.


    Google Scholar


    Cronartium ribicola, Disease resistance, Fire suppression, Genetic diversity, Historical logging, Pinus lambertiana

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page