Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of burrowing species on processes in subsurface soil remain poorly known. We investigated the effects of burrowing and grazing by plains vizcachas (Lagostomus maximus, Chinchilidae), a large colonial burrowing rodent native to South America, on the distribution and dynamics of C and N in soil of a semi-arid scrub ecosystem in central Argentina. In situ N mineralization (Nmin), potential Nmin and CO2 emissions were measured in surface soil (0–10 cm) and soil at the mean depth of burrows (65 ± 10 cm; mean ± 1 SD) in five colonial burrow systems and adjacent grazed and ungrazed zones. Decomposition and N dynamics of vizcacha feces on the soil surface and in burrow soil was assessed using litterbags. Total C and N in soil in burrows were 1.6 and 5.5 times greater than in undisturbed soil at similar depths, and similar to amounts in surface soil. Inorganic N, particularly NO3‾, was consistently highest in burrows, intermediate in surface soil on burrow systems, and relatively low in all other zones. Despite high C and N content in all burrows, in situ net Nmin was highly variable in burrow soil. Feces decomposed and released N more rapidly in burrow soil. Laboratory incubations indicated that soil moisture limited Nmin under conditions that typically characterize burrow microclimate, and that rates increased dramatically at soil moisture contents >25% field capacity, which likely occurs during pulsed rainfall events. Thus, the high and seasonally stable NO3‾ content in burrow soil likely originated from the accumulation of pulsed mineralization events over time. Burrowing and waste deposition by vizcachas produced "resource islands" at the landscape scale. At a measured density of 0.3 burrow systems per hectare, colonial burrow soil contained an amount of inorganic N equal to 21% and 30% of plant-available N in surface soil and subsurface soil, respectively, in an area that represented only 0.35% of the landscape. Our study indicates that burrowing and deposition of waste results in a highly active subsurface layer in which C and N dynamics function much like surface soil when soil moisture is not limiting.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Clark, Kenneth L.; Branch, Lyn C.; Hierro, Jose L.; Villarreal, Diego. 2016. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina. Soil Biology & Biochemistry. 103: 253–261.

    Cited

    Google Scholar

    Keywords

    Burrowing mammals, Vizcachas, Nitrogen mineralization, Plant-available nitrogen, Bioturbation, Ecosystem engineers

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53810