Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

 Due to a lapse in federal funding, this USDA website will not be actively updated. Once funding has been reestablished, online operations will continue.


  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Adrianna C. Foster; Jacquelyn K. Shuman; Herman H. Shugart; Kathleen A. DwirePaula J. Fornwalt; Jason Sibold; Jose Negron
    Date: 2017
    Source: Ecological Modelling. 351: 109-128.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (2.0 MB)

    Description

    Rocky Mountain forests are highly important for their part in carbon cycling and carbon storage as well as ecosystem services such as water retention and storage and recreational values. These forests are shaped by complex interactions among vegetation, climate, and disturbances. Thus, climate change and shifting disturbances may lead to significant changes in species composition and biomass. Individual tree-based modeling allows various climate change scenarios and their effects on forest dynamics to be tested. We use an updated individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME) at four sites in the southern Rocky Mountains. UVAFME is quantitatively and qualitatively validated at these sites against inventory data and descriptions of vegetation zonation and successional dynamics. Results show that UVAFME can be used to reasonably simulate the expected change in species composition with elevation for the southern Rocky Mountains region. UVAFME output on size structure (stems size class-1ha-1) and species-specific biomass (tonnes C ha-1) is comparable to forest inventory data at these locations. UVAFME can also simulate successional dynamics to accurately predict changes in species dominance with landscape age. We then perform a hypothetical climate sensitivity test in which temperature is first increased linearly by 2°C over 100 years, stabilized for 200 years, cooled back to present climate values over 100 years, and again stabilized for 200 years. Results show that elevated temperatures within the southern Rocky Mountains may lead to decreases in biomass and shifts upslope in species composition, especially that of ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and lodgepole pine (Pinus contorta). At some ecotones these changes are also likely to be fairly long lasting for at least 100 years. The results from these tests suggest that UVAFME and other individual-based gap models can be used to inform forest management and climate mitigation strategies for this region.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Foster, Adrianna C.; Shuman, Jacquelyn K.; Shugart, Herman H.; Dwire, Kathleen A.; Fornwalt, Paula J.; Sibold, Jason; Negron, Jose. 2017. Validation and application of a forest gap model to the southern Rocky Mountains. Ecological Modelling. 351: 109-128.

    Cited

    Google Scholar

    Keywords

    UVAFME, vegetation modeling, forest dynamics, individual-based gap models, climate change, model validation

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53832