Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): N.P. Havill; J. Elkinton; J.C. Andersen; S.B. Hagen; Hannah J. Broadley; G.J. Boettner; A. Caccone
    Date: 2017
    Source: Bulletin of Entomological Research
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (353.0 KB)

    Related Research Highlights


    NRS-2016-143
    1,000 Herons

    Description

    The European winter moth, Operophtera brumata, is a non-native pest in the Northeastern USA causing defoliation of forest trees and crops such as apples and blueberries. This species is known to hybridize with O. bruceata, the Bruce spanworm, a native species across North America, although it is not known if there are hybrid generations beyond F1. To study winter moth population genetics and hybridization with Bruce spanworm, we developed two sets of genetic markers, single nucleotide polymorphisms (SNPs) and microsatellites, using genomic approaches. Both types of markers were validated using samples from the two species and their hybrids. We identified 1216 SNPs and 24 variable microsatellite loci. From them we developed a subset of 95 species-diagnostic SNPs and ten microsatellite loci that could be used for hybrid identification. We further validated the ten microsatellite loci by screening field collected samples of both species and putative hybrids. In addition to confirming the presence of F1 hybrids reported in previous studies, we found evidence for multi-generation asymmetric hybridization, as suggested by the occurrence of hybrid backcrosses with the winter month, but not with the Bruce spanworm. Laboratory crosses between winter moth females and Bruce spanworm males resulted in a higher proportion of viable eggs than the reciprocal cross, supporting this pattern. We discuss the possible roles of population demographics, sex chromosome genetic incompatibility, and bacterial symbionts as causes of this asymmetrical hybridization and the utility of the developed markers for future studies.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Havill, N.P.; Elkinton, J.; Andersen, J.C.; Hagen, S.B.; Broadley, Hannah J.; Boettner, G.J.; Caccone, A. 2017. Asymmetric hybridization between non-native winter moth, Operophtera brumata (Lepidoptera: Geometridae), and native Bruce spanworm, Operophtera bruceata, in the Northeastern United States, assessed with novel microsatellites and SNPs. Bulletin of Entomological Research. 107(02): 241-250. https://doi.org/10.1017/S0007485316000857.

    Cited

    Google Scholar

    Keywords

    hybridization, invasive species, microsatellite development, next generation sequencing, RAD-seq

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53890