Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Greg C. LiknesDacia M. MeneguzzoTodd A. Kellerman
    Date: 2017
    Source: International Journal of Applied Earth Observation and Geoinformation
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (2.0 MB)

    Description

    Windbreaks are an important ecological resource across the large expanse of agricultural land in the central United States and are often planted in straight-line or L-shaped configurations to serve specific functions. As high-resolution (i.e., <5 m) land cover datasets become more available for these areas, semi-or fully-automated methods for distinguishing windbreaks from other patches of trees are needed for use with thematic raster datasets. To address this need, we created three shape indexes: a morphology-based index that we have named the Straight and Narrow Feature Index (SNFI), a windbreak sinuosity index, and an area index indicating the occupied fractional area of a bounding box. The indexes were tested in two study areas: (1) a riparian area dominated by sinuous bands of trees but mixed with row crop agriculture and (2) an agricultural area with a mix of straight-line and L-shaped windbreaks. In the riparian area, a Kruskall–Wallis rank sum test indicated class differences for all three indexes, and pairwise comparisons indicate windbreaks and riparian trees are separable using any of the three indexes. SNFI also produced significant differences between windbreaks oriented in different directions (east-west vs. north-south).In the agricultural area, the Kruskall–Wallis rank sum test indicated differences between classes for all three indexes, and pairwise comparisons show that all class pairs have significant differences for at least one index, with the exception of L-shaped windbreaks vs. non-windbreak tree patches. We also used classification trees to objectively assign representative samples of tree patches to classes using both single indexes and multiple indexes. Classes were correctly assigned for more than 90% of the samples in both the riparian and agricultural study areas. In the riparian area, combining indexes did not improve accuracy compared to using SNFI alone, whereas in the agricultural area, combining the three indexes produced the best result. Thematic datasets derived from high-resolution imagery are becoming more available, and extracting useful information can be a challenge, partly due to the large amount of data to assess. Calculating the three shape indexes presented can assist with efficient identification of candidate windbreaks and as such, hold good promise for value-added analysis of tree function in the central United States.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Liknes, Greg C.; Meneguzzo, Dacia M.; Kellerman, Todd A. 2017. Shape indexes for semi-automated detection of windbreaks in thematic tree cover maps from the central United States. International Journal of Applied Earth Observation and Geoinformation. 59: 167-174. https://doi.org/10.1016/j.jag.2017.03.005.

    Cited

    Google Scholar

    Keywords

    Windbreaks, Image morphology, Agroforestry, Shape-based classification

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/53954