Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Debasish Saha; Benjamin M. Rau; Jason P. Kaye; Felipe Montes; Paul R. Adler; Armen R. Kemanian
    Date: 2016
    Source: Global Change Biology Bioenergy
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (460.0 KB)

    Description

    Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon (C) benefits of energy crops. Particularly high emissions may occur during the transition period when the soil is disturbed, plants are establishing, and nitrate and water accumulation may favor emissions. We measured N2O emissions and associated environmental drivers during the transition of perennial grassland in a Conservation Reserve Program (CRP) to switchgrass (Panicum virgatum L.) and Miscanthus x giganteus in the bottom 3-ha of a watershed in the Ridge and Valley ecoregion of the northeastern United States. Replicated treatments of CRP (unconverted), unfertilized switchgrass (switchgrass), nitrogen (N) fertilized switchgrass (switchgrass-N), and Miscanthus were randomized in four blocks. Each plot was divided into shoulder, backslope, and footslope positions based on the slope and moisture gradient. Soil N2O flux, soil moisture, and soil mineral nitrogen availability were monitored during the growing season of 2013, the year after the land conversion. Growing season N2O flux showed a significant vegetation-by-landscape position interaction (P < 0.009). Switchgrass-N and Miscanthus treatments had 3 and 6-times higher cumulative flux respectively than the CRP in the footslope, but at other landscape positions fluxes were similar among land uses. A peak N2O emission event, contributing 26% of the cumulative flux, occurred after a 10.8-cm of rain during early June. Prolonged subsoil saturation coinciding with high mineral N concentration fueled N2O emission hot spots in the footslopes under energy crops. Our results suggest that mitigating N2O emissions during the transition of CRP to energy crops would mostly require a site-specific management of the footslopes.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Saha, Debasish; Rau, Benjamin M.; Kaye, Jason P.; Montes, Felipe; Adler, Paul R.; Kemanian, Armen R. 2016. Landscape control of nitrous oxide emissions during the transition from conservation reserve program to perennial grasses for bioenergy. Global Change Biology Bioenergy. 9, 783-795.    13 p. DOI:10.1111/gcbb.12395

    Cited

    Google Scholar

    Keywords

    energy crops, conservation reserve program, land use change, switchgrass, miscanthus, landscape position

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/54077