Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite suspensions increased with higher CNC loadings and with longer aging times. PAN-co-MAA/CNC films maintained a similar level of optical transparency even with up to 40 wt% CNC loading. The glass transition temperature (Tg) increased from 92 to 118°C, and the composites had higher thermal stability below 350°C compared to both neat PAN-co-MAA and neat CNC. The mechanical properties also increased with higher CNC loadings, elastic modulus increased from 2.2 to 3.7 GPa, tensile strength increased from 75 to 132 MPa, and the storage modulus increased from 3.9 to 10.5 GPa. Using the Kelly and Tyson model the interfacial shear strength between the PAN-co-MAA and CNC was calculated to be 27 MPa.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Luo, Jeffrey; Chang, Huibin; Bakhtiary Davijani, Amir A.; Liu, H. Clive; Wang, Po-Hsiang; Moon, Robert J.; Kumar, Satish. 2017. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose. 24(4): 1745-1758.

    Cited

    Google Scholar

    Keywords

    Cellulose nanocrystal, , Nanocomposite, Polymer, Polyacrylonitrile

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/54090