Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    A rare, stand-replacing fire in northern Minnesota, USA provided the opportunity to compare the effects of wildfire and timber harvesting in two peatland forest communities, nutrient-poor black spruce (Picea mariana) bogs (BSB) and nutrient-rich tamarack (Larix laricina) swamps (RTS). We found the response between the two communities and their corresponding vegetation to be highly sensitive to different types and severity of disturbance, ranging from modest shifts in ground layer vascular plants and bryophyte species abundance, to wholesale plant community transformation resulting from the removal of the upper peat surface. Fire had a positive influence on black spruce regeneration within BSB sites, particularly areas experiencing lower levels of fire severity, with seedling densities significantly higher than harvest and control areas. Our results also suggest that ecosystem recovery will be rapid after lowseverity fire in these areas, given that localized areas of peat combustion created suitable microsites for black spruce seedling establishment ensuring this species will remain a component of the post-fire communities. In contrast, tamarack regeneration was only documented in harvested RTS sites. For BSB, there was spatial heterogeneity in peat consumption as a result of fire behavior interacting with varying moisture conditions throughout peat hummocks and hollows. Light to moderate burning created suitable black spruce seedbeds by reducing cover of Sphagnum moss and the dominant ericaceous shrub Rhododendron groenlandicum, and increasing the cover of pioneering mosses, such as Polytrichum strictum. In RTS sites, fire typically consumed the entire upper peat surface, resulting in homogenization of community composition and retrogression towards marsh-like conditions dominated by cattails (Typha spp.). These findings underscore the importance of accounting for post-fire microsite heterogeneity when developing silvicultural systems for emulating natural disturbance processes in conifer forests with a naturally accumulated surface peat layer. In addition, the state shifts observed in areas experiencing high severity fire suggest that increases in fire frequency and severity may create significant challenges to maintaining forested conditions in these areas, particularly in RTS.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Rowe, Erika R.; D'Amato, Anthony W.; Palik, Brian J.; Almendinger, John C. 2017. Early response of ground layer plant communities to wildfire and harvesting disturbance in forested peatland ecosystems in northern Minnesota, USA. Forest Ecology and Management. 398: 140-152.


    Google Scholar


    Peatland forests, Picea mariana, Larix laricina, Bryophyte community, Clearcutting, Wildfire

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page