Skip to main content
U.S. flag

An official website of the United States government

Genetic diversity and structure of an endangered desert shrub and the implications for conservation


Zhihao Su
Li Zhuo
Xiaolong Jiang
Wenjun Li
Xiaoshan Kang



Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station


AoB PLANTS. 9(3): 1-10.


Population genetic information can provide valuable insight for the conservation and management of threatened and endangered plant species. Tamarix taklamakanensis is an endangered shrub endemic to arid basins of northwestern China. This species serves to stabilize soils in this region, but has seen substantial loss in its abundance due to depletion of ground water. The populations of this species have become small and fragmented, warranting conservation. Seven microsatellite loci were used to assess the genetic diversity and structure of 15 populations in the Tarim Basin, China. Among populations, the expected heterozygosity and total gene diversity were both moderate (HE = 0.392, hT = 0.432), however the allelic diversity was low (A = 2.4). Eleven populations were detected to have experienced recent bottlenecks using Wilcoxon’s test and a model-shift test. Most populations of T. taklamakanensis in the centre of Tarim Basin showed low levels of genetic differentiation, but higher levels in geographically outlying populations. Genetic structure based on Bayesian assignment, the neighbour-joining network and principal coordinates analyses produced similar results, supporting five groups in the Tarim Basin. Gene flow was high among Bayesian groups based on historical gene flow estimated by private alleles. The genetic structure of T. taklamakanensis supports a pattern where gene flow principally occurs along river corridors through hydrochory of seeds and insect-mediated pollination. Populations upstream have contributed to a more diverse mixture of populations near the confluence of several rivers near the centre of Tarim Basin. This pattern of genetic structure could be influenced by the flow of water from different river systems. Conservation efforts should focus on fostering the regeneration of this species, maintaining genetic diversity and preserving the extant genetic structure. Conservation efforts are contingent upon maintaining ground water and streamflows in this arid basin.


Su, Zhihao; Richardson, Bryce A.; Zhuo, Li; Jiang, Xiaolong; Li, Wenjun; Kang, Xiaoshan. 2017. Genetic diversity and structure of an endangered desert shrub and the implications for conservation. AoB PLANTS. 9(3): 1-10.


Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.