Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Christopher Daly; Melissa E. Slater; Joshua A. Roberti; Stephanie H. LaseterLloyd W. Swift
    Date: 2017
    Source: International Journal of Climatology
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (17.0 MB)

    Description

    A 69-station, densely spaced rain gauge network was maintained over the period 1951–1958 in the Coweeta Hydrologic Laboratory, located in the southern Appalachians in western North Carolina, USA. This unique dataset was used to develop the first digital seasonal and annual precipitation maps for the Coweeta basin, using elevation regression functions and residual interpolation. It was found that a 10-m elevation grid filtered to an approximately 7-km effective wavelength explained the most variance in precipitation (R2 = 0.82–0.95). A ‘dump zone’ of locally high precipitation a short distance downwind from the mountain crest marking the southern border of the basin was the main feature that was not explained well by the precipitation–elevation relationship.

    These data and maps provided a rare ‘ground-truth’ for estimating uncertainty in the national-scale Parameter-elevation Relationships on Independent Slopes Model (PRISM) precipitation grids for this location and time period. Differences between PRISM and ground-truth were compared with uncertainty estimates produced by the PRISM model and cross-validation errors. Potential sources of uncertainty in the national PRISM grids were evaluated, including the effects of coarse grid resolution, limited station data, and imprecise station locations.

    The PRISM national grids matched closely (within 5%) with the Coweeta dataset. The PRISM regression prediction interval, which includes the influence of stations in an area of tens of kilometres around a given location, overestimated the local error at Coweeta (12–20%). Offsetting biases and generally low error rates made it difficult to isolate major sources of uncertainty in the PRISM grids, but station density and selection, and mislocation of stations were identified as likely sources of error. The methods used in this study can be repeated in other areas where high-density data exist to gain a more comprehensive picture of the uncertainties in national-level datasets, and can be used in network optimization exercises.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Daly, Christopher; Slater, Melissa E.; Roberti, Joshua A.; Laseter, Stephanie H.; Swift, Lloyd W. 2017.High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology. 69: 55-768. 14 p.  https://doi.org/10.1002/joc.4986.

    Cited

    Google Scholar

    Keywords

    Coweeta, precipitation mapping, rain gauge, precipitation measurement, uncertainty, PRISM, orography interpolation

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/54432