Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Wenchi Jin; Hong S. He; Frank R. Thompson; Wen J. Wang; Jacob S. FraserStephen R. ShifleyBrice B. Hanberry; William D. Dijak
    Date: 2017
    Source: Scientific Reports
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (1.0 MB)


    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using one representative model for each of the simple, intermediate, and complex demographic approaches (ED2, LANDIS PRO, and LINKAGES, respectively). All approaches agreed that the current carbon sink would persist at least to 2100. However, carbon dynamics after current carbon sink diminishes to zero differ for different demographic modelling approaches. Both the simple and the complex demographic approaches predicted prolonged periods of relatively stable carbon densities after 2100, with minor declines, until the end of simulations in 2300. In contrast, the intermediate demographic approach predicted the CHF would become a carbon source between 2110 and 2260, followed by another carbon sink period. The disagreement between these patterns can be partly explained by differences in the capacity of models to simulate gross growth (both birth and subsequent growth) and mortality of short-lived, relatively shade-intolerant tree species.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Jin, Wenchi; He, Hong S.; Thompson, Frank R.; Wang, Wen J.; Fraser, Jacob S.; Shifley, Stephen R.; Hanberry, Brice B.; Dijak, William D. 2017. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes. Scientific Reports. 7: 41821-.


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page