Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Steven G. McNultyJohnny L. Boggs; John D. Aber; Lindsey E. Rustad
    Date: 2017
    Source: Science of The Total Environment
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (1.0 MB)

    Description

    A field experiment was established in a high elevation red spruce (Picea rubens Sarg.) – balsam fir (Abies balsamea) forest on Mount Ascutney Vermont, USA in 1988 to test the nitrogen (N) saturation hypothesis, and to better understand the mechanisms causing forest decline at the time. The study established replicate control, lowand high dose nitrogen addition plots (i.e., 0, 15.7 and 31.4 kg NH4Cl-N ha−1 yr−1). The treatments began in 1988 and continued annually until 2010, butmonitoring has continued to present. During the fertilization period, forest floor C:N, net in situ N mineralization, spruce foliar Ca%, and live spruce basal area decreased with increasing N addition, while foliar spruce N% and forest floor net nitrification increased with increasing N addition. The control plots aggraded forest floor N at a rate equal to the sum of the net in situ N mineralization plus average ambient deposition. Conversely, N addition plots lost forest floor N. Following the termination of N additions in 2010, the measured tree components returned to pre-treatment levels, but forest floor processes were slower to respond. During the 30 year study, site surface air temperature has increased by 0.5 °C per decade, and total N deposition has decreased 5.5 to 4.0 kg N ha−1 yr−1. There have also been three significant drought years and at least one freeze injury year after which much of the forest mortality on the N addition plots occurred. Given that there was no control for the air temperature increase, discussion of the interactive impacts of climate and change and N addition is only subjective. Predicted changes in climate, N deposition and other stressors suggest that even in the absence of N saturation, regeneration of the spruce-fir ecosystem into the next century
    seems unlikely despite recent region-wide growth increases

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    McNulty, Steven G.; Boggs, Johnny L.; Aber, John D.; Rustad, Lindsey E. 2017.Spruce-fir forest changes during a 30-year nitrogen saturation experiment. Science of The Total Environment. 605-606: 376-390. https://doi.org/10.1016/j.scitotenv.2017.06.147.

    Cited

    Google Scholar

    Keywords

    Nitrogen saturation, Red spruce, Long-term experiment, Climate chang

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/54534