Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Kevin R. FordConstance A. HarringtonJ. Bradley St. Clair
    Date: 2017
    Source: Global Change Biology. 23(8): 3348-3362.
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (1.0 MB)


    The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on diameter-growth-cessation timing in coast Douglas-fir (an ecologically and economically vital tree) using high-frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, "reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas-fir to extend its growing season in response to climate change in the warm parts of its range.

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Ford, Kevin R.; Harrington, Constance A.; St. Clair, J. Bradley. 2017. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species’ range: Modeling diameter-growth cessation in coast Douglas-fir. Global Change Biology. 23(8): 3348-3362.


    Google Scholar


    Cambial growth, climate change, day length, diameter growth, genecology, phenology, Pseudotsuga menziesii var. menziesii, secondary growth

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page