Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Timothy A. Warner; Nicholas S. SkowronskiMichael R. Gallagher
    Date: 2017
    Source: International Journal of Remote Sensing
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (3.0 MB)

    Description

    The WorldView-3 (WV-3) sensor, launched in 2014, is the first highspatial resolution scanner to acquire imagery in the shortwave infrared (SWIR). A spectral ratio of the SWIR combined with the nearinfrared (NIR) can potentially provide an effective differentiation of wildfire burn severity. Previous high spatial resolution sensors were limited to data fromthe visible and NIR for mapping burn severity, for example using the normalized difference vegetation index (NDVI). Drawing on a study site in the Pine Barrens of New Jersey, USA, we investigate optimal processing methods for analysing WV-3 data, with a focus on the pre-fire minus post-fire differenced normalized burn ratio (dNBR). Although the imagery, originally acquired with a 3.7 m instantaneous field of view, was aggregated to 7.5 m pixels by DigitalGlobe due to current licensing constraints, a slight additional smoothing of the data was nevertheless found to help reduce noise in the multi-temporal dNBR imagery. The highest coefficient of determination (R2) of the regressions of dNBR with the field-based composite burn index was obtained with a dNBR ratio produced with the NIR1 and SWIR6 bands. Only a very small increase in R2 was found when dNBR was calculated using the average of NIR1 and NIR2 for the NIR bands, and SWIR5 to SWIR8 for the SWIR bands. dNBR calculated using SWIR1 as the NIR band produced notably lower R2 values than when either NIR1 or NIR2 were used. Differenced NDVI data was found to produce models with a much lower R2 than dNBR, emphasizing the importance of the shortwave infrared region formonitoring fire severity. High spatial resolution dNBR data fromWV-3 can potentially provide valuable information on finer details regarding burn severity patterns than can be obtained from Landsat 30 m data.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Warner, Timothy A.; Skowronski, Nicholas S.; Gallagher, Michael R. 2017. High spatial resolution burn severity mapping of the New Jersey Pine Barrens with WorldView-3 near-infrared and shortwave infrared imagery. International Journal of Remote Sensing. 38(2): 598-616. https://doi.org/10.1080/01431161.2016.1268739.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/54671