Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Emerging evidence shows that interactions between soils and subsurface flow paths contribute to spatial variations in stream water chemistry in headwater catchments. However, few have yet attempted to quantify chemical variations in soils at catchment and hillslope scales. Watershed 3 (WS3) at Hubbard Brook Experimental Forest, New Hampshire, USA, was studied in order to better understand pedogenesis and its relationship to subsurface water dynamics. In WS3, 99 soil profiles were described, sampled by horizon, and assigned to a hydropedologic unit (HPU), a functional classification previously developed using landscape and morphological metrics which corresponded with distinct water table regimes. Soil samples were extracted with 1) citrate-dithionite (d) and analyzed for Fed and Mnd; and 2) acid ammonium oxalate (o) and analyzed for Alo, Feo and the rare earth elements Lao, Ceo, and Pro. Total organic C was also measured. These elements were redistributed via vertical and lateral podzolization. Typical (horizontally layered) podzols developed in the majority of the catchment due to predominantly vertical, unsaturated flow. However, lateral flow produced four other podzol types with distinct chemistry; thicker spodic horizons of laterally accumulating soils generally reflected larger pools of trace metals and subsoil organic C. The spatial distribution of positive cerium-anomalies (Ce/Ce*) in soil profiles proved to be a consistent hydropedologic indicator of lateral flow and seasonally high water table in three hillslopes. Despite occasional high water table in some of the HPUs, they were not hydric soils and were distinct from wetter podzols of coastal plains due to their high Fe content. This study suggests that vertical and lateral spatial variation in soil chemical composition, including the complexity of Ce distribution, as it relates to subsurface water dynamics should be considered when studying or predicting catchment scale functions such as stream solute export and biogeochemical processes.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Bourgault, Rebecca R.; Ross, Donald S.; Bailey, Scott W.; Bullen, Thomas D.; McGuire, Kevin J.; Gannon, John P. 2017. Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland setting. Geoderma. 307: 238-252.


    Google Scholar


    Podzols, Hydropedology, Organic carbon, Rare earth elements, Trace metals

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page