Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Brian S. Cade; Barry R. Noon; Rick D. Scherer; John J. Keane
    Date: 2017
    Source: The Auk. 134(4): 783-801
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (2.0 MB)

    Description

    Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical conditional distribution of a bounded discrete random variable. The logistic quantile regression model requires that counts are randomly jittered to a continuous random variable, logit transformed to bound them between specified lower and upper values, then estimated in conventional linear quantile regression, repeating the 3 steps and averaging estimates. Back-transformation to the original discrete scale relies on the fact that quantiles are equivariant to monotonic transformations. We demonstrate this statistical procedure by modeling 20 years of California Spotted Owl fledgling production (0−3 per territory) on the Lassen National Forest, California, USA, as related to climate, demographic, and landscape habitat characteristics at territories. Spotted Owl fledgling counts increased nonlinearly with decreasing precipitation in the early nesting period, in the winter prior to nesting, and in the prior growing season; with increasing minimum temperatures in the early nesting period; with adult compared to subadult parents; when there was no fledgling production in the prior year; and when percentage of the landscape surrounding nesting sites (202 ha) with trees ≥25 m height increased. Changes in production were primarily driven by changes in the proportion of territories with 2 or 3 fledglings. Average variances of the discrete cumulative distributions of the estimated fledgling counts indicated that temporal changes in climate and parent age class explained 18% of the annual variance in owl fledgling production, which was 34% of the total variance. Prior fledgling production explained as much of the variance in the fledgling counts as climate, parent age class, and landscape habitat predictors. Our logistic quantile regression model can be used for any discrete response variables with fixed upper and lower bounds.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Cade, Brian S.; Noon, Barry R.; Scherer, Rick D.; Keane, John J. 2017. Logistic quantile regression provides improved estimates for bounded avian counts: a case study of California Spotted Owl fledgling production. The Auk. 134(4): 783-801. https://doi.org/10.1642/AUK-16-195.1.

    Cited

    Google Scholar

    Keywords

    bounded counts, cumulative ordinal logistic regression, fledgling production, logit transformation, quantile regression, Spotted Owl

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/54762