Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Michael K. YoungDaniel J. IsaakKevin S. McKelvey; Taylor M. Wilcox; Matthew R. Campbell; Matthew P. Corsi; Dona HoranMichael K. Schwartz
    Date: 2017
    Source: Global Change Biology
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (718.0 KB)

    Description

    Invasive hybridization, in which an introduced species may introgressively hybridize with a native taxon and threaten its persistence, is prominently featured in the conservation literature. One of the most frequently cited examples of this phenomenon involves interactions between native westslope cutthroat trout Oncorhynchus clarkii lewisi and introduced rainbow trout Oncorhynchus mykiss in a portion of the U.S. Northern Rocky Mountains (Allendorf & Leary, 1988). A recent paper by Muhlfeld et al. (2017) revisited this issue and concluded that introgressive hybridization between these taxa is ubiquitous and related primarily to climatic factors and propagule pressure from rainbow trout, findings which corroborate an earlier study (Young et al., 2016) that accurately quantified how broad riverscape gradients - not thresholds - in temperature, zoogeographic characteristics, and propagule pressure were related to levels of introgression. Yet, Muhlfeld et al. (2017) argued that there were deficiencies in that analysis and discounted that these same gradients can result in resistance of westslope cutthroat trout populations to invasive hybridization. Instead, based on extrapolation of decadal trends at nonrandom monitoring sites, they asserted that genomic extinction - the loss of all unhybridized parental forms - is inevitable for most populations of westslope cutthroat trout in the absence of physical obstacles to upstream dispersal by rainbow trout or human intervention to remove them. We question this assertion based on our field observations and critical review of the subject (McKelvey et al., 2016; Young et al., 2016), the emerging recognition of environmental constraints on introgression (Wang & Bradburd, 2014), and the ecophysiological differences between these taxa and their hybrids (Rasmussen, Robinson, Hontela, & Heath, 2012). Resolving this issue is crucial, because resources to effect conservation are limited and poorly informed efforts can be costly and have unintended consequences (Fausch, Rieman, Dunham, Young, & Peterson, 2009).

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Young, Michael K.; Isaak, Daniel J.; McKelvey, Kevin S.; Wilcox, Taylor M.; Campbell, Matthew R.; Corsi, Matthew P.; Horan, Dona; Schwartz, Michael K. 2017. Ecological segregation moderates a climactic conclusion to trout hybridization. Global Change Biology. 23(12): 5021-5023. https://doi.org/10.1111/gcb.13828.

    Cited

    Google Scholar

    Keywords

    ecological segregation, trout hybridization, invasive hybridization, westslope cutthroat trout, Oncorhynchus clarkii lewisi, rainbow trout, Oncorhynchus mykiss

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/54920