Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ana M. G. Barros; Alan A. AgerMichelle A. DayHaiganoush K. PreislerThomas A. SpiesEric White; Robert J. Pabst; Keith A. Olsen; Emily Platt; John D. Bailey; John P. Bolte
    Date: 2017
    Source: Ecology and Society. 22(1): 24.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (2.0 MB)


    We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type. We modeled forest succession using a state-and-transition approach and simulated wildfires based on the contemporary fire regime of the region. We tested for the presence of temporal trends and overall differences in burned area among four fuel management scenarios. Results showed that when the forest was managed to reduce fuels it burned less: over the course of 50 years there was up to a 40% reduction in area burned. However, simulation outputs did not reveal the expected temporal trend, i.e., area burned did not decrease progressively with time, nor did the absence of management lead to its increase. These results can be explained as the consequence of an existing wildfire deficit and vegetation succession paths that led to closed canopy, and heavy fuels forest types that are unlikely to burn under average fire weather. Fire (and management) remained relatively rare disturbances and, given our assumptions, were unable to alter long-term vegetation patterns and consequently unable to alter long-term wildfire dynamics. Doubling and tripling current management targets were effective in the near term but not sustainable through time because of a scarcity of stands eligible to treat according to the modeled management constraints. These results provide new insights into the long-term dynamics between fuel management programs and wildfire and demonstrate that treatment prioritization strategies have limited effect on fire activity if they are too narrowly focused on particular forest conditions.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Barros, Ana M. G.; Ager, Alan A.; Day, Michelle A.; Preisler, Haiganoush K.; Spies, Thomas A.; White, Eric; Pabst, Robert J.; Olsen, Keith A.; Platt, Emily; Bailey, John D.; Bolte, John P. 2017. Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA. Ecology and Society. 22(1): 24.


    Google Scholar


    agent-based model, Deschutes National Forest, Flammap, minimum travel time, state-and-transition model

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page