Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Oliver Gailing
    Date: 2017
    Source: In: Sniezko, Richard A.; Man, Gary; Hipkins, Valerie; Woeste, Keith; Gwaze, David; Kliejunas, John T.; McTeague, Brianna A., tech. cords. 2017. Gene conservation of tree species—banking on the future. Proceedings of a workshop. Gen. Tech. Rep. PNW-GTR-963. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. p. 94.
    Publication Series: General Technical Report (GTR)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (31.0 KB)

    Description

    Hybridization can result in the transfer of adaptations among species and may contribute to speciation processes. On the other hand, hybridization can also result in a loss of species diversity due to asymmetric gene flow between species (genetic swamping) and in low hybrid fitness. An understanding of the outcomes of interspecific hybridization is crucial for the management and conservation of tree populations. As a result of warming climates, it is expected that distribution ranges of species will shift, resulting in new zones between species and potentially new or increased hybridization.
    Oaks (Quercus spp.) are the dominant species in many hardwood forests of North America. Hybridization is common in oaks and species boundaries are fuzzy as a result of large within-species variation, phenotypic plasticity and interspecific gene flow. While morphological identification of species can be difficult, DNA markers such as nuclear and genic microsatellites can be used to assign individuals to species and hybrids. We have developed a set of 44 microsatellite markers that distinguishes between closely related red oak species with different adaptations to drought. While most markers in the set showed low to moderate interspecific differentiation, one genic microsatellite marker showed pronounced interspecific differentiation as result of strong divergent selection and may be associated with adaptive species differences. By using these new microsatellite markers, we will be able to assess interspecific gene flow and introgression of adaptive alleles. Results on the frequency of hybridization and hybrid fitness will be important for the management of oak populations in the face of climate change

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Gailing, Oliver. 2017. Hybridization and management of oak populations. In: Sniezko, Richard A.; Man, Gary; Hipkins, Valerie; Woeste, Keith; Gwaze, David; Kliejunas, John T.; McTeague, Brianna A., tech. cords. 2017. Gene conservation of tree species—banking on the future. Proceedings of a workshop. Gen. Tech. Rep. PNW-GTR-963. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. p. 94.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/55091