Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Hongjie Li; Daniel J. Yelle; Chang Li; Mengyi Yang; Jing Ke; Ruijuan Zhang; Yu Liu; Na Zhu; Shiyou Liang; Xiaochang Mo; John Ralph; Cameron R. Currie; Jianchu Mo
    Date: 2017
    Source: Proceedings of the National Academy of Sciences. 114(18): 4709-4714.
    Publication Series: Scientific Journal (JRNL)
    Station: Forest Products Laboratory
    PDF: Download Publication  (3.0 MB)


    Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether– and carbon–carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating termite system, we reveal unprecedentedly rapid lignin depolymerization and degradation by combining laboratory feeding experiments, lignocellulosic compositional measurements, electron microscopy, 2D-NMR, and thermochemolysis. In a gut transit time of under 3.5 h, in young worker termites, poplar lignin sidechains are extensively cleaved and the polymer is significantly depleted, leaving a residue almost completely devoid of various condensed units that are traditionally recognized to be the most recalcitrant. Subsequently, the fungus-comb microbiome preferentially uses xylose and cleaves polysaccharides, thus facilitating final utilization of easily digestible oligosaccharides by old worker termites. This complementary symbiotic pretreatment process in the fungus-growing termite symbiosis reveals a previously unappreciated natural system for efficient lignocellulose degradation.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Li, Hongjie; Yelle, Daniel J.; Li, Chang; Yang, Mengyi; Ke, Jing; Zhang, Ruijuan; Liu, Yu; Zhu, Na; Liang, Shiyou; Mo, Xiaochang; Ralph, John; Currie, Cameron R.; Mo, Jianchu. 2017. Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences. 114(18): 4709-4714.


    Google Scholar


    Lignin, carbohydrate, NMR, symbiosis, age polyethism

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page