Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ronald E. McRoberts
    Date: 2014
    Source: Remote Sensing of Environment
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (306.0 KB)


    Multiple remote sensing-based approaches to estimating gross afforestation, gross deforestation, and net deforestation are possible. However, many of these approaches have severe data requirements in the form of long time series of remotely sensed data and/or large numbers of observations of land cover change to train classifiers and assess the accuracy of classifications. In particular, when rates of change are small and equal probability sampling is used, observations of change may be scarce. For these situations, post-classification approaches may be the only viable alternative. The study focused on model-assisted and model-based approaches to inference for post-classification estimation of gross afforestation, gross deforestation, and net deforestation using Landsat imagery as auxiliary data. Emphasis was placed on estimation of variances to support construction of statistical confidence intervals for estimates. Both analytical and bootstrap approaches to variance estimation were used. For a study area in Minnesota, USA, estimates of net deforestation were not statistically significantly different from zero.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    ​McRoberts, Ronald E. 2014. Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data. Remote Sensing of Environment. 151: 149-156.


    Google Scholar


    bootstrap, model-assisted regression estimator, model-based estimator

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page