Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Bruce D. Cook; Kenneth J. Davis; Weiguo Wang; Ankur Desai; Bradford W. Berger; Ron M. Teclaw; Jonathan G. Martin; Paul V. Bolstad; Peter S. Bakwin; Chuixiang Yi; Warren Heilman
    Date: 2004
    Source: Agricultural and Forest Meteorology
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (872.0 KB)


    Turbulent fluxes of carbon, water vapor, and temperature were continuously measured above an upland forest in north central Wisconsin during 1999 and 2000 using the eddy covariance method. Maple (Acer saccharum), basswood (Tilia americana), and green ash (Fraxinus pennsylvanica) species found in this forest also comprise a substantial portion of the landscape in the northern Great Lakes region and area, and it has been hypothesized that forests of this age (60–80 years) are responsible for net uptake of atmospheric CO2 over North America. Mean CO2, water vapor, and temperature profile measurements were used to improve flux estimates during periods of low turbulence, and were effective for friction velocities (u*) >0.3 m s-1. Unique observations at this site included nighttime and early morning venting anomalies that seemed to originate from a seemingly homogenous area within the forest. These elevated NEE measurements, some as high as 80 mol m-2 s-1, appeared in valid turbulent flux observations for hours at a time, and provided circumstantial evidence for preferential venting and/or existence of pooled CO2 in low-lying areas.We observed that the forest was a moderate sink for atmospheric carbon, and cumulative NEE of CO2 was estimated to be -334 g C m-2 year-1 during 2000. Sensitivity to low-turbulence flux corrections was very small (21 g C m-2 year-1), and discrepancies between annual estimates of NEE and NEP were similar to other sites. A normalized measure of ecosystem respiration, the free energy of activation, was presented and its seasonal variations were analyzed. Gross ecosystem production (GEP) was high (1165 g C m-2 year-1) and ecosystem respiration (ER) was low (817 g C m-2 year-1) in comparison to spatially integrated, landscape-scale observations from WLEF (914 and 1005 g C m-2 year-1, respectively), a 477 m tower located 22 km to the northeast [Glob. Change Biol. 9 (2003) 1278]. Forest transpiration was responsible for most of the water released to the atmosphere. Stomata closed under intense sunlight and high vapor pressure deficits (VPD > 1.5 kPa). Effect of stomotal closure on annual CO2 uptake was minimal due to adequate soil moisture and moderate VPD during the growing season.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Cook, Bruce D.; Davis, Kenneth J.; Wang, Weiguo; Desai, Ankur; Berger, Bradford W.; Teclaw, Ron M.; Martin, Jonathan G.; Bolstad, Paul V.; Bakwin, Peter S.; Yi, Chuixiang; Heilman, Warren. 2004. Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA. Agricultural and Forest Meteorology. 126(3-4): 271-295.


    Google Scholar


    Eddy correlation, Deciduous forest, Carbon cycle, Nocturnal boundary layer, Evapotranspiration, Stomatal closure

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page