Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Kenneth J. Bagstad; Erika Cohen; Zachary H. Ancona; Steven. G. McNultyGe   Sun
    Date: 2018
    Source: Applied Geography
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven. G.; Sun, Ge  2018. The sensitivity of ecosystem service models to choices of input data and spatial resolution, Applied Geography, Volume 93, April 2018, Pages 25-36, https://doi.org/10.1016/j.apgeog.2018.02.005.

    Cited

    Google Scholar

    Keywords

    Ecosystem accounting, InVEST, Model comparison, Spatial scale, Uncertainty, WaSSI

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/55802