Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Frank S. Gilliam; Christopher A. Walter; Mary Beth Adams; William T. Peterjohn
    Date: 2018
    Source: Ecosystems
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (2.0 MB)

    Description

    The structure and function of terrestrial ecosystemsare maintained by processes that vary with temporal and spatial scale. This study examined temporal and spatial patterns of net nitrogen (N) mineralization and nitrification in mineral soil of three watersheds at the Fernow Experimental Forest, WV: 2 untreated watersheds and 1 watershed receiving aerial applications of N over a 25-year period. Soil was sampled to 5 cm from each of seven plots per watershed and placed in two polyethylene bags—one bag brought to the laboratory for extraction/analysis, and the other bag incubated in situ at a 5 cm depth monthly during growing seasons of 1993–1995, 2002, 2005, 2007– 2014. Spatial patterns of net N mineralization and nitrification changed in all watersheds, but were especially evident in the treated watershed, with spatial variability changing non-monotonically, increasing then decreasing markedly. These results support a prediction of the N homogeneity hypothesis that increasing N loads will increase spatial homogeneity in N processing. Temporal patterns for net N mineralization and nitrification were similar for all watersheds, with rates increasing about 25–30% from 1993 to 1995, decreasing by more than 50% by 2005, and then increasing significantly to 2014. The best predictor of these synchronous temporal patterns across all watersheds was number of degree days below 19°C, a value similar to published temperature maxima for net rates of N mineralization and nitrification for these soils. The lack of persistent, detectable differences in net nitrification between watersheds is surprising because fertilization has maintained higher stream-water nitrate concentrations than in the reference watersheds. Lack of differences in net nitrification among watersheds suggests that N-enhanced stream-water nitrate following N fertilization may be the result of a reduced biotic demand for nitrate following fertilization with ammonium sulfate.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Gilliam, Frank S.; Walter, Christopher A.; Adams, Mary Beth; Peterjohn, William T. 2018. Nitrogen (N) Dynamics in the Mineral Soil of a Central Appalachian Hardwood Forest During a Quarter Century of Whole-Watershed N Additions. Ecosystems. 21(8): 1489-1504. https://doi.org/10.1007/s10021-018-0234-4.

    Cited

    Google Scholar

    Keywords

    forest ecosystems, net nitrification, net N mineralization, nitrogen saturation, nitrogen homogeneity hypothesis, N fertilization, forest soils, long-term spatial and temporal trends

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/55823