Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Cellulosic nanofibrils (CNFs) were isolated from one of the most widespread freshwater macroalgae, Aegagropila linnaei. The algae were first carboxylated with a recyclable dicarboxylic acid, which facilitated deconstruction into CNFs via microfluidization while preserving the protein component. For comparison, cellulosic fibrils were also isolated by chemical treatment of the algae with sodium chlorite. Compared with the energy demanded for deconstruction of wood fibers, algal biomass required substantially lower levels. Nevertheless, the resultant nanofibrils were more crystalline (crystallinity index > 90%) and had a higher degree of polymerization (DP > 2500). Taking advantage of these properties, algal CNFs were used to produce films or nanopapers (tensile strength of up to 120 MPa), the strength of which resulted from protein-enhanced interfibrillar adhesion. Besides being translucent and flexible, the nanopapers displayed unusually high thermal stability (up to 349 °C). Overall, we demonstrate a high-end utilization of a renewable bioresource that is available in large volumes, for example, in the form of algal blooms.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Guo, Jiaqi; Uddin, Khan Mohammad Ahsan; Mihhels, Karl; Fang, Wenwen; Laaksonen, Päivi; Zhu, J. Y.; Rojas, Orlando J. 2017. Contribution of residual proteins to the thermomechanical performance of cellulosic nanofibrils isolated from green macroalgae. ACS Sustainable Chemistry & Engineering. 5(8): 6978-6985.

    Cited

    Google Scholar

    Keywords

    Cellulose nanofibrils, macroalgae, nanopaper, proteins, thermostability

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/55950